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Abstract

An exact expression for the free energy of a system of classical magnetic moments, which occupy sites on a Fibonacci
or Thue~Morse quasi-crystal lattice and interact via an isotropic Heisenberg interaction, is obtained. The temperature depen-
dence of the specific heat for certain classes of one-dimensional quasi-crystal lattices is discussed. In the case, when spin
rotations are confined in a plane (model of plane rotators), some Fibonacci crystals show an extra peak in the specific heat

at low temperatures.

1. Introduction and model

Recently, great attention has been paid to the
physical properties of quasi-periodic systems on one-
dimensional lattices (1D) [1]. These systems are inter-
mediate between completely periodic, perfect crystals
and random, amorphous solids. The 1D quasi-crystal,
which is constructed by arranging two different build-
ing blocks 4 and B in a Fibonacci series, has become
a standard model for investigations in these systems.

The Fibonacci sequence P, is obtained by the
recursion relation P,y = {P;P;_} for /=1 with
Py = {B} and P, = {4}. If |, is the total number
of elements in the sequence P, ), we can find F,,
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from the recursion relation Fy,y = F;_| + F;forl>1,
with Fp = F) = 1.

Generalized Fibonacci lattices are straightforward
generalizations of the above, where two building
blocks 4 and B are arranged in the Fibonacci se-
quence. The generalized Fibonacci sequence P%# is
given by the recursion relation

Pl = PPl 3, (1)

where Py = {B} and P| = {4} for /=1, and « and p
positive integers. N
The generalized Fibonacci number £;_; is the to-

tal number of building blocks 4 and B in P;‘f] It has

the recurrence relation F.; = aF,_; + ﬁﬁ‘;, forl>=1
with /o = F| = 1. The relative portion of type 4 el-
ements is given by

(1) o
. . F
P,p = lim 4 —t

—4 = lim = =
[—=o0 Nj” + Nz(yl) I=oo Fy + Fj
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1,
= - Tx. ’ )

+ LN
where N/g” (Nfgl)) is the number of elements of type
A(B) and n, 3 = F1/F,_,. In the limit { — o, N
goes to S[f+(B° +45*)'?]. The Fibonacci se-
quence with the golden mean is obtained by putting
o= =1and then ,, = (1 +/3)/2.

A Thue-Morse sequence has a quite different kind
of aperiodicity than a Fibonacci sequence [2-5]. The
Thue—Morse sequence is defined by the recursion
relation M, = {M;M"} for [>1 with M, = {4B}
and where M}* is the complement of M;, which can
be obtained by interchanging 4 and B. In each gener-
ation of the Thue-Morse sequence the proportion of
type 4 elements to type B elements is %

The (electronic, phonon and the plasmons) spectral
and transport properties of quasi-periodic Fibonacci
and Thue-Morse lattices have been intensively stud-
ied in Refs. {2-12]. The thermodynamic properties
of a 1D Ising spins on a Finonacci lattice in the
absence of a magnetic field have been calculated
in the case of equal concentrations of atoms 4 and
B in Refs, [13,14]. Furthermore, the statistics of a
binary alloy has been investigated at low- and high-
temperatures taking into account the different concen-
trations of atoms, or alternatively, a magnetic field
[15].

In this paper we concentrate on the thermodynamic
proporties of spins in a classical Heisenberg model,
where the spins are located at the sites of the gen-
eralised Fibonacci lattice or Thue—Morse lattice. We
find an exact analytical expression for free energy
of the systems, as well in the case when spins are
allowed to rotate in a plane (model of plane rotators),
as in the case of three dimensional rotation.

2. The method of calculation

Let us consider the linear chain of magnetic mo-
ments in the absence of an external magnetic field with
arbitrary interactions between nearest atoms. The par-
tition function of this system is given by

N—1]

/ /exp ZWSSH HdQ (3)

where W; = W{(,j 4 1} is, except for a sign, the ex-
change integral of the nearest moments j and j + 1,
scaled with the statistic temperature k7.

If W; < 0 the ground state is antiferromagnetic
and if W, > 0 the ground state is ferromagnetic.
The vectors S; and ;) characterise the magnetic
moments of the sites j and j+ 1 and are of unit
length. The vectors §; are directed into the solid
angle d Q; =sinf;d 0, dg, ((),,(p, are the spherical
angles of the VCLtOI‘ S) N is a total numbers of
sites in the lattice. The integration in Eq. (3) will
be carried out over all possible orientations of the
moments,

Let us first consider the case, where all dipoles
have an arbitrary orientation in the plane. The
partition function (3) can then be written in the
form

N—I

p.f/ /exp Z Wicos(gp; — @)

N
<] dor “)

7=l

or equivalently as

pl_/ /ﬁ {1[,(W)+ Z L (W))

H;j=—0C

N

1] dor- (5)

j=1

x explinj(@; — @j41)}

Here, use is made of

exp{W; cos(@; — ¢;-1)}
= W)+ Y L (W) explini(o; — @)} (6)

nj=—oc

1,(x) are Bessel functions of #th order with imaginary
arguments. The sum Y.’ in Eqgs. (4) and (5) extend
over all n; excluding n; = 0.

After a final integration over the angles ¢, in Eq.
(5) one obtains the result

N—1

Zuy =" ] 7). (7)

J=1
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In particular, for a translational invariant lat-

tice: Wy =Wo=--.=Wy_, =W and N>1 we
have
Zy = [2nlp(W))". (8)

This expression is the same as the one, which was
derived by [16] using the transfer-matrix method, for
a close system of plane rotators.

The more general case is the one, where the mo-
ments have different orientations in three dimensions
(model od spherical rotators).

Let us introduce the matrix exp(#;S,S,,). The
eigenvalues and eigenoperators of this matrix are de-
termined by the following eigenvalue problem:

/eXP(W/S;‘Sjﬂ)@J(Sm)dg_m = J:P:(S)). (9)
The eigenvalues and the eigenfunctions of this equa-
tion have the form

d " sinh W;
Go (W) = Iy = Wf’( ) LS (10)

TAW AW )W

20+ 1(n— |mN"?
4w (n+ |m])!

X P (cos 0,)e™ . (11)

(P,,-(S/') = Tn‘m(()j*(p_i) - I:

where 7, ,(0;.¢;) are surface harmonics, P,‘/"l(x)
are the associated Legender functions, n = 0. 1,2, ...,
—n<m<n; ¢ = {n. m}. From the orthogonality con-
dition of the eigenvectors of the hermitian operators,
it follows that

/ ©,(S,)B,/(S,)d2, = 5, (12)

Using the standard bilinear representation of a matrix,
one can rewrite the matrix

sinh W, ’.
T Z £o(W))Pe(S))

XD (S;-1). (13)

exp(W;S,8;1) =

In the above expression, the sum runs over the entire
spectra except for & = {0,0}. Calculating the partition
function (3) with Eq. (13) and making use of Eq. (12),
gives the following result:

N—1 .

B Y sinh ¥,

Zyp = (47) H. o (14)
J=

In the special case of an ideal lattice, the well-known
expression

7y~ (47: (15)

for N > 1 can be recovered from Eq. (14), which has
been obtained by [17] using another method.

sinh W > N

3. Free energy of quasi-periodic lattices

The general expressions Eqgs. (7) and (14) can
be evaluated for the special case of a generalized
Fibonacci lattice. The Fibonacci lattice is a special
case of a classical 1D Heisenberg model with non-
isotropic interactions. The exchange integrals #; can
assume only two possible values W, or Wj. The se-
quence of the values W, and Wy can be derived from
the recurrence relation (1).

According to Eqgs. (2) and (7), the partition func-
tion for the generalized Fibonacci lattice in the case
of the plane rotators, will have the following form for
N — oc:

Zy = r) oW (W) J¥ =), (16)

Similarly, one deduces for the spherical rotators from
Eq. (14),

Z}, = (4n)" sinh Wy Muv Tsinh wy 1V 7 z«.u).
" Wi W
17y

The knowledge of an explicit expression for the
partition functions, Egs. (16) and (17), allows us to
calculate any physical quantity. Particularly, we are
interested in the free energy per site. For the model
plane rotators we get

NT'FS = <kT[In2m + P, g InIo(Wy)
(1 = Py p) Inlo(Wp)] (18)
and for the model of spherical rotators one has

sinh W4

W,

NT'Fl = —kT |Ind4n + P, 5 In

sinh W

+(1 P, 3)In (19)

Here 7 is the absolute temperature, & is the Boltzmann
constant. In order to calculate the free energy of the
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Fig. 1. Specific heat is shown as a function of temperature, x = kT/W,, for the linear chain of plane rotators: (a) Fibonacci lattice with
parameters v = 0.5, « = f§ = | (long-dashed line); v = 0.2, x = f = 1 (dashed line); v=02, x =1, =3 (dotted line) and v = | for
a regular lattice (full line); (b) Thue-Morse lattice with parameters v = 0.5, (full line); v = 0.2, (dashed line).

in

b —

Thue-Morse lattice, one has to replace P, s by
expressions (18) and (19).

4. Discussion

To illustrate the influence of the lattice’s quasi-
periodicity on the thermodynamic properties, we con-
sider the specific heats of the Heisenberg model on
the one-dimensional generalized Fibonacci and on the
Thue—Morse lattice using Eqgs. (18) and (19). For the
plane rotator model, we get

Ca/kN = P, g Wil — W' f(Wy) — fH(W)]
(1 = P )WL — Wy (W) — FA(Ws)], (20)

where f(x) = L(x)/lo(x).

For the spherical rotators, the specific heat is given
by

2
CY/kN =P, 4 {1 - A W; ]
sinh® Wy
w3
+(1 =Py )|l — —B] 21
( ’ﬁ)[ sinh? W @

Using Egs. (20) and (21), we plot the temperature de-
pendence of C(T) in x = kT/W 4 (see Eq. (3)) for the
different parameters v = Wg/W,, « and f (see Figs. 1
and 2). It can be seen, that in the case of the spheri-
cal rotators (Fig. 2(a) and 2(b)) the quasi-periodicity
of the lattice does not cause any qualitative change in
the temperature dependence of the specific heat, when
compared with the ordinary Heisenberg model. In the
case of the model of plane rotators (see Fig. 1(a) and
1(b)), the maximum of the specific heat C},(T) is
smaller than in the case of the ordinary Heisenberg
model, and it shifts to lower temperatures. However,
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Fig. 2. Specific heat is plotted as a function of temperature, x = kT/W,, for the linear chain of three-dimensional rotators: (a) Fibonacci
lattice with parameters v = 0.5, » = # = 1 (long dashed line); v =02, o = § = 1 (dashed line); v=02, a=1, f=3andv=1fora
regular lattice (full line); (b) Thue—Morse lattice with parameters v = 0.5, (full line); v = 0.2, (dashed line).

there is a striking difference between the two mod-
els. The Fibonacci lattice shows an additional peak for
small values of v at low temperatures (dotted line in
Fig. 1). This peak flattens, when P, s decreases. Since
the heat capacity contains information about the or-
dering of the system, Fig. 1 indicates near ordering in
the quasi-periodic Fibonacci lattice for plane rotators.
Analogous behaviour for the heat capacity in the bond-
diluted Ising model on a Fibonacci lattice with differ-
ent concentrations of atoms was obtained by Badalian
et al. [15].
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